Skip to content
Snippets Groups Projects
Commit 80f468e4 authored by MAFTOUH Mohammed Amine's avatar MAFTOUH Mohammed Amine
Browse files

Edit fonctions_clustering.py

parent bb042184
No related branches found
No related tags found
No related merge requests found
def agglomerative_clustering(reduced_embeddings, cluster_range=range(2, 21)):
def agglomerative_clustering(reduced_embeddings, n_clusters):
"""
Teste l'Agglomerative Clustering avec différents nombres de clusters.
Applique l'Agglomerative Clustering avec un nombre fixe de clusters.
:param reduced_embeddings: Matrice des embeddings réduits
:param cluster_range: Intervalle du nombre de clusters à tester
:return: Liste des labels prédits
:param reduced_embeddings: embeddings
:param n_clusters: Nombre de clusters
:return: Labels prédits
"""
clustering_results = {}
for n_clusters in cluster_range:
agg_clustering = AgglomerativeClustering(n_clusters=n_clusters)
agg_labels = agg_clustering.fit_predict(reduced_embeddings)
clustering_results[n_clusters] = agg_labels
return clustering_results
agg_clustering = AgglomerativeClustering(n_clusters=n_clusters)
agg_labels = agg_clustering.fit_predict(reduced_embeddings)
return agg_labels
def gaussian_mixture(reduced_embeddings, cluster_range=range(2, 21)):
def gaussian_mixture(reduced_embeddings, n_clusters):
"""
Teste le modèle de mélange gaussien (GMM) avec différents nombres de clusters.
Applique le modèle de mélange gaussien (GMM) avec un nombre fixe de clusters.
:param reduced_embeddings: Matrice des embeddings réduits
:param cluster_range: Intervalle du nombre de clusters à tester
:return: Liste des labels prédits
:param reduced_embeddings: embeddings
:param n_clusters: Nombre de clusters
:return: Labels prédits
"""
clustering_results = {}
for n_clusters in cluster_range:
gmm = GaussianMixture(n_components=n_clusters, random_state=42)
gmm_labels = gmm.fit_predict(reduced_embeddings)
clustering_results[n_clusters] = gmm_labels
return clustering_results
gmm = GaussianMixture(n_components=n_clusters, random_state=42)
gmm_labels = gmm.fit_predict(reduced_embeddings)
return gmm_labels
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment