Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
Topic_modeling
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
MAFTOUH Mohammed Amine
Topic_modeling
Commits
4a16227c
Commit
4a16227c
authored
1 week ago
by
MAFTOUH Mohammed Amine
Browse files
Options
Downloads
Patches
Plain Diff
Edit mesures_clustering.py
parent
ee213ec5
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
clustering/mesures_clustering.py
+32
-1
32 additions, 1 deletion
clustering/mesures_clustering.py
with
32 additions
and
1 deletion
clustering/mesures_clustering.py
+
32
−
1
View file @
4a16227c
from
sklearn.metrics
import
silhouette_score
def
compute_silhouette_scores
(
reduced_embeddings
,
labels
):
"""
Calcule les scores de silhouette pour différents nombres de clusters.
...
...
@@ -8,4 +9,34 @@ def compute_silhouette_scores(reduced_embeddings, labels):
:return: silhouette score
"""
silhouette_avg
=
silhouette_score
(
reduced_embeddings
,
labels
)
return
silhouette_avg
\ No newline at end of file
return
silhouette_avg
def
compute_dunn_index
(
reduced_embeddings
,
labels
):
"""
Calcule l
'
index de Dunn pour évaluer la qualité du clustering.
:param reduced_embeddings: Matrice des embeddings réduits
:param labels: Labels prédits par les algorithmes de clustering
:return: Index de Dunn
"""
unique_labels
=
np
.
unique
(
labels
)
# calcul des distances intra-cluster
intra_cluster_distances
=
[]
for
label
in
unique_labels
:
cluster_points
=
reduced_embeddings
[
labels
==
label
]
if
len
(
cluster_points
)
>
1
:
distances
=
pdist
(
cluster_points
)
intra_cluster_distances
.
append
(
np
.
max
(
distances
))
#calcul des distances inter-cluster
inter_cluster_distances
=
[]
for
i
,
label_i
in
enumerate
(
unique_labels
):
for
j
,
label_j
in
enumerate
(
unique_labels
):
if
i
<
j
:
points_i
=
reduced_embeddings
[
labels
==
label_i
]
points_j
=
reduced_embeddings
[
labels
==
label_j
]
distances
=
pdist
(
np
.
vstack
([
points_i
,
points_j
]))
inter_cluster_distances
.
append
(
np
.
min
(
distances
))
#calcul de l'index de Dunn
dunn_index
=
np
.
min
(
inter_cluster_distances
)
/
np
.
max
(
intra_cluster_distances
)
return
dunn_index
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment