Skip to content
Snippets Groups Projects
Select Git revision
  • 20a09fab3b444f56a746c9b2acaae9dbc419b8ff
  • without_tipselection default
  • develop protected
  • fix/grafana-local-dashboard
  • wasp
  • fix/dashboard-explorer-freeze
  • master
  • feat/timerqueue
  • test/sync_debug_and_650
  • feat/sync_revamp_inv
  • wip/sync
  • tool/db-recovery
  • portcheck/fix
  • fix/synchronization
  • feat/new-dashboard-analysis
  • feat/refactored-analysis-dashboard
  • feat/new-analysis-dashboard
  • test/demo-prometheus-fpc
  • prometheus_metrics
  • wip/analysis-server
  • merge/fpc-test-value-transfer
  • v0.2.2
  • v0.2.1
  • v0.2.0
  • v0.1.3
  • v0.1.2
  • v0.1.1
  • v0.1.0
28 results

goshimmer_without_tipselection

Polytopes for music segmentation

Polytopic paradigms to study music, based on [1] and [2].

In near future, I should upload my own reference, detailing the specificity of both approaches of [1] and [2], which have been gathered on a same framework and on a same code project (this one).

The goal of the polytopic approach is to define a new compression criteria, then used as cost for music segmentation, based on dynamic programming. See [3] or [4] for more details on this approach.

[1] C. Guichaoua, Modèles de compression et critères de complexité pour la description et l’inférence de structure musicale. PhD thesis, 2017.

[2] C. Louboutin, Modélisation multi-échelle et multi-dimensionnelle de la structure musicale par graphes polytopiques. PhD thesis, Rennes 1, 2019.

[3] Sargent, G., Bimbot, F., & Vincent, E. (2016). Estimating the structural segmentation of popular music pieces under regularity constraints. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(2), 344-358.

[4] Marmoret, A., Cohen, J., Bertin, N., & Bimbot, F. (2020, October). Uncovering Audio Patterns in Music with Nonnegative Tucker Decomposition for Structural Segmentation. In ISMIR 2020-21st International Society for Music Information Retrieval.