Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
Twelve Points
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
clp_eyetracking_ia_model
Twelve Points
Commits
57769777
Commit
57769777
authored
2 weeks ago
by
OTHÉGUY Marion
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
3ef38fa1
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
compute_centroids.py
+142
-0
142 additions, 0 deletions
compute_centroids.py
with
142 additions
and
0 deletions
compute_centroids.py
0 → 100644
+
142
−
0
View file @
57769777
import
cv2
import
csv
import
os
import
numpy
as
np
# Chemin vers la vidéo
eye
=
'
right
'
nb
=
1
video_path
=
f
'
.
\\
recording
{
nb
}
\\
recording
{
nb
}
__
{
eye
}
.avi
'
frame_folder
=
f
'
.
\\
recording
{
nb
\\
output_frames_
{
eye
}
'
contour_output_folder = f
'
.
\\
recording
{
nb
}
\\\\
contour_frames_
{
eye
}
'
# Chemin du fichier CSV pour sauvegarder les centroïdes
csv_file_path = f
'
.
\\
recording
{
nb
}
\\
centroids_
{
eye
}
.
csv
'
centroids_list, timestamps=[], []
# Créer un dossier pour sauvegarder les images binaires et un dossier pour sauvegarder les images avec les contours
if not os.path.exists(frame_folder)
:
os
.
makedirs
(
frame_folder
)
if
not
os
.
path
.
exists
(
contour_output_folder
)
:
os
.
makedirs
(
contour_output_folder
)
# Lire la vidéo
cap
=
cv2
.
VideoCapture
(
video_path
)
frame_number
=
0
while
True
:
# Lire la vidéo frame par frame
ret
,
frame
=
cap
.
read
()
timestamp
=
cap
.
get
(
cv2
.
CAP_PROP_POS_MSEC
)
/
1000.0
# Get timestamp in seconds
timestamps
.
append
(
timestamp
)
# Si la vidéo est terminée, on arrête la boucle
if
not
ret
:
break
# Convertir la frame en niveaux de gris
gray_frame
=
cv2
.
cvtColor
(
frame
,
cv2
.
COLOR_BGR2GRAY
)
# Appliquer une transformation binaire avec un seuil
_
,
binary_frame
=
cv2
.
threshold
(
gray_frame
,
127
,
255
,
cv2
.
THRESH_BINARY
)
# Sauvegarder l'image binaire
frame_output_path
=
os
.
path
.
join
(
frame_folder
,
f
'
frame_
{
frame_number
:
04
d
}
.
png
'
)
cv2.imwrite(frame_output_path, binary_frame)
# Détecter les contours
contours, hierarchy = cv2.findContours(binary_frame, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
centroids = []
# Trier les contours par taille (aire décroissante)
contours = sorted(contours, key=cv2.contourArea, reverse=True)
# Calculer les centroïdes des contours
for contour in contours
:
M
=
cv2
.
moments
(
contour
)
if
M
[
"
m00
"
]
!
=
0
:
cX
=
int
(
M
[
"
m10
"
]
/
M
[
"
m00
"
])
cY
=
int
(
M
[
"
m01
"
]
/
M
[
"
m00
"
])
centroids
.
append
((
cX
,
cY
))
else
:
centroids
.
append
((
0
,
0
))
# Initialiser les coordonnées, les tailles des deux plus gros centroïdes et leur distance
x1
,
y1
,
x2
,
y2
,
s1
,
s2
,
d
=
None
,
None
,
None
,
None
,
None
,
None
,
None
# Vérifier s'il y a au moins un centroid
if
len
(
centroids
)
>
0
:
x1
,
y1
=
centroids
[
0
]
# Vérifier s'il y a au moins deux centroides
if
len
(
centroids
)
>
1
:
x2
,
y2
=
centroids
[
1
]
# Vérifier si les coordonnées des centroïdes doivent être échangées
if
frame_number
>
0
and
centroids_list
:
prev_x1
,
prev_y1
,
prev_x2
,
prev_y2
=
None
,
None
,
None
,
None
for
prev_centroid
in
reversed
(
centroids_list
)
:
if
prev_x1
is
None
and
prev_centroid
[
1
]
is
not
None
:
prev_x1
=
prev_centroid
[
1
]
if
prev_y1
is
None
and
prev_centroid
[
2
]
is
not
None
:
prev_y1
=
prev_centroid
[
2
]
if
prev_x2
is
None
and
prev_centroid
[
3
]
is
not
None
:
prev_x2
=
prev_centroid
[
3
]
if
prev_y2
is
None
and
prev_centroid
[
4
]
is
not
None
:
prev_y2
=
prev_centroid
[
4
]
if
prev_x1
is
not
None
and
prev_y1
is
not
None
and
prev_x2
is
not
None
and
prev_y2
is
not
None
:
break
if
x1
is
not
None
and
y1
is
not
None
and
x2
is
not
None
and
y2
is
not
None
:
dist_s1_prev_s2
=
np
.
sqrt
((
x1
-
prev_x2
)
**
2
+
(
y1
-
prev_y2
)
**
2
)
dist_s2_prev_s1
=
np
.
sqrt
((
x2
-
prev_x1
)
**
2
+
(
y2
-
prev_y1
)
**
2
)
dist_s1_prev_s1
=
np
.
sqrt
((
x1
-
prev_x1
)
**
2
+
(
y1
-
prev_y1
)
**
2
)
dist_s2_prev_s2
=
np
.
sqrt
((
x2
-
prev_x2
)
**
2
+
(
y2
-
prev_y2
)
**
2
)
if
dist_s1_prev_s1
>
dist_s1_prev_s2
and
dist_s2_prev_s2
>
dist_s2_prev_s1
:
x2
,
y2
=
centroids
[
0
]
x1
,
y1
=
centroids
[
1
]
# Si le premier centroid disparaît, le deuxième reste en position 2
if
x1
==
0
and
y1
==
0
and
(
x2
!
=
0
or
y2
!
=
0
)
:
x1
,
y1
=
x2
,
y2
x2
,
y2
=
None
,
None
if
x1
is
not
None
and
y1
is
not
None
and
x2
is
not
None
and
y2
is
not
None
:
d
=
np
.
sqrt
((
x1
-
x2
)
**
2
+
(
y1
-
y2
)
**
2
)
else
:
d
=
None
centroids_list
.
append
([
timestamp
,
x1
,
y1
,
x2
,
y2
,
d
])
# Créer une image en couleur pour dessiner les contours
contour_image
=
cv2
.
cvtColor
(
binary_frame
,
cv2
.
COLOR_GRAY2BGR
)
# Dessiner les contours sur l'image (couleur rouge)
cv2
.
drawContours
(
contour_image
,
contours
,
-
1
,
(
0
,
0
,
255
),
2
)
cv2
.
circle
(
contour_image
,
(
x1
,
y1
),
1
,
(
0
,
255
,
0
),
-
1
)
# Dessiner le premier centroïde en vert
cv2
.
circle
(
contour_image
,
(
x2
,
y2
),
1
,
(
0
,
255
,
0
),
-
1
)
# Dessiner le premier centroïde en vert
cv2
.
putText
(
contour_image
,
f
'
(
{
x1
}
,
{
y1
}
);
(
{
x2
}
,
{
y2
}
)
'
, (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (0, 255, 0), 1) # Ajouter un label au premier centroïde
# Sauvegarder l
'
image
avec
les
contours
contour_output_path
=
os
.
path
.
join
(
contour_output_folder
,
f
'
contour_
{
frame_number
:
04
d
}
.
png
'
)
cv2.imwrite(contour_output_path, contour_image)
frame_number += 1
print(f
'
Processed
frame
{
frame_number
}
'
)
# Libérer les ressources
cap.release()
cv2.destroyAllWindows()
# Écrire les centroïdes dans un fichier CSV
with open(csv_file_path, mode=
'
w
'
, newline=
''
) as csv_file
:
csv_writer
=
csv
.
writer
(
csv_file
)
csv_writer
.
writerow
([
'
time
'
,
'
x1
'
,
'
y1
'
,
'
x2
'
,
'
y2
'
,
'
d
'
])
# Écrire l'en-tête
for
centroid
in
centroids_list
:
csv_writer
.
writerow
(
centroid
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment