Newer
Older
package io.gitlab.chaver.minimax.cli;
import com.google.gson.Gson;
import io.gitlab.chaver.minimax.io.Alternative;
import io.gitlab.chaver.minimax.io.IAlternative;
import io.gitlab.chaver.minimax.learn.train.AbstractRankingLearning;
import io.gitlab.chaver.minimax.learn.train.passive.AHPRankLearn;
import io.gitlab.chaver.minimax.learn.train.passive.KappalabRankLearn;
import io.gitlab.chaver.minimax.learn.train.passive.SVMRankLearn;
import io.gitlab.chaver.minimax.ranking.*;
import io.gitlab.chaver.minimax.rules.io.RuleWithMeasures;
import io.gitlab.chaver.minimax.score.FunctionParameters;
import io.gitlab.chaver.minimax.score.IScoreFunction;
import io.gitlab.chaver.minimax.score.ScoreFunctionFactory;
import io.gitlab.chaver.minimax.util.RandomUtil;
import picocli.CommandLine;
import picocli.CommandLine.Option;
import java.util.concurrent.Callable;
import java.util.stream.Collectors;
import static io.gitlab.chaver.minimax.learn.train.LearnUtil.*;
public class LearnFunctionAndRankCli implements Callable<Integer> {
@Option(names = "-d", description = "Path of the rules data", required = true)
private String dataPath;
@Option(names = "--tt", description = "Path of the training/test data", required = true)
private String trainingTestDataPath;
@Option(names = "-m", description = "Measures used in the function", required = true, split = ":")
private String[] measures;
@Option(names = "-o", description = "Name of the oracle", required = true)
private String oracleName;
@Option(names = "-l", description = "Learning algorithm", required = true)
private String learnAlgorithm;
@Option(names = "--seed", description = "Seed for random number generation")
private long seed = 2994274L;
@Option(names = "-r", description = "Path of the result files", required = true)
private String resPath;
@Option(names = "--delta", description = "Delta parameter (kappalab, default value : 1e-5)")
@Option(names = "--kadd", description = "k-additivity of the model (kappalab, default value : 2)")
@Option(names = "--sigf", description = "Number of significant figures (kappalab, default value : 3)")
@Option(names = "-c", description = "Regularisation parameter (svm, default value : 0.01)")
private List<RuleWithMeasures> readRules(String path) throws IOException {
try (BufferedReader reader = new BufferedReader(new FileReader(path))) {
Gson gson = new Gson();
List<RuleWithMeasures> rules = new ArrayList<>();
String line;
while ((line = reader.readLine()) != null) {
rules.add(gson.fromJson(line, RuleWithMeasures.class));
}
return rules;
}
}
private void writeRules(String path, List<RuleWithMeasures> rules) throws IOException {
try (BufferedWriter writer = new BufferedWriter(new FileWriter(path))) {
Gson gson = new Gson();
for (RuleWithMeasures r : rules) {
writer.write(gson.toJson(r) + "\n");
}
}
}
private void writeObject(String path, Object o) throws IOException {
try (BufferedWriter writer = new BufferedWriter(new FileWriter(path))) {
Gson gson = new Gson();
writer.write(gson.toJson(o));
}
}
private List<IAlternative> getAlternatives(List<RuleWithMeasures> rules) {
List<IAlternative> alternatives = new ArrayList<>();
for (RuleWithMeasures r : rules) {
double[] vector = Arrays
.stream(measures)
.mapToDouble(m -> r.getMeasureValues().get(m))
.toArray();
alternatives.add(new Alternative(vector));
}
return alternatives;
}
private Comparator<IAlternative> getOracle(double[] weights, List<IAlternative> trainingAlternatives,
List<IAlternative> testAlternatives, List<RuleWithMeasures> trainingRules,
List<RuleWithMeasures> testRules, int nbTransactions) {
if (oracleName.equals(OWAOracle.TYPE)) {
return new OWAOracle(weights);
}
if (oracleName.equals(LinearFunctionOracle.TYPE)) {
return new LinearFunctionOracle(weights);
}
if (oracleName.equals("choquetPearson")) {
return new ChoquetOracle(
new CorrelationChoquetFuncBuilder(weights, trainingAlternatives.toArray(new IAlternative[0])).getCapacity()
);
}
if (oracleName.equals("chiSquared")) {
ChiSquaredOracle2 oracle = new ChiSquaredOracle2(nbTransactions);
oracle.addAlternativesRules(trainingAlternatives, trainingRules.stream().map(i -> (IRule) i).collect(Collectors.toList()));
oracle.addAlternativesRules(testAlternatives, testRules.stream().map(i -> (IRule) i).collect(Collectors.toList()));
return oracle;
}
throw new RuntimeException("Wrong oracle type: " + oracleName);
}
private AbstractRankingLearning getLearningAlgo(Ranking<IAlternative> expectedRanking) {
if (learnAlgorithm.equals("kappalab")) {
KappalabRankLearn kappalab = new KappalabRankLearn(expectedRanking);
kappalab.setDelta(delta);
kappalab.setKAdditivity(kAdd);
kappalab.setSigf(sigf);
if (learnAlgorithm.equals("ahp")) {
AHPRankLearn ahp = new AHPRankLearn(expectedRanking);
return ahp;
}
if (learnAlgorithm.equals("svm")) {
SVMRankLearn svm = new SVMRankLearn(expectedRanking);
svm.setRegularisationParameter(regularisationParameter);
return svm;
}
throw new RuntimeException("Wrong learning algorithm: " + learnAlgorithm);
}
private List<RankingMetric> getRankingMetrics(int nbRules) {
int top1 = (int) (0.01 * nbRules);
return Arrays.asList(new KendallConcordanceCoeff(), new SpearmanRankCorrelationCoefficient(),
new RecallMetric(top1), new RecallMetric(top10), new AveragePrecision(top1), new AveragePrecision(top10));
}
private Map<String, String> getRankingMetricLabels(int nbRules) {
int top1 = (int) (0.01 * nbRules);
if (top1 <= 0) {
top1 = 1;
}
if (top10 <= 0) {
top10 = 1;
}
Map<String, String> labels = new HashMap<>();
labels.put(KendallConcordanceCoeff.TYPE, KendallConcordanceCoeff.TYPE);
labels.put(SpearmanRankCorrelationCoefficient.TYPE, SpearmanRankCorrelationCoefficient.TYPE);
labels.put(RecallMetric.TYPE + "@" + top1, RecallMetric.TYPE + "@1%");
labels.put(RecallMetric.TYPE + "@" + top10, RecallMetric.TYPE + "@10%");
labels.put(AveragePrecision.TYPE + "@" + top1, AveragePrecision.TYPE + "@1%");
labels.put(AveragePrecision.TYPE + "@" + top10, AveragePrecision.TYPE + "@10%");
return labels;
}
private Map<String, Double> computeRankingMetricValues(List<RankingMetric> rankingMetrics,
Map<String, String> rankingMetricLabels,
Ranking<IAlternative> actualRanking,
Ranking<IAlternative> expectedRanking) {
Map<String, Double> rankingMetricValues = new HashMap<>();
for (RankingMetric metric : rankingMetrics) {
double value = metric.compute(expectedRanking, actualRanking);
String label = rankingMetricLabels.get(metric.getName());
rankingMetricValues.put(label, value);
}
return rankingMetricValues;
}
@Override
public Integer call() throws Exception {
int nbTransactions = getNbTransactions(dataPath + "_prop.jsonl");
int nbMeasures = measures.length;
List<RuleWithMeasures> trainingRules = readRules(trainingTestDataPath + "_train.jsonl");
List<RuleWithMeasures> testRules = readRules(trainingTestDataPath + "_test.jsonl");
List<IAlternative> trainingAlternatives = getAlternatives(trainingRules);
List<IAlternative> testAlternatives = getAlternatives(testRules);
RandomUtil.getInstance().setSeed(seed);
double[] randomWeights = RandomUtil.getInstance().generateRandomWeights(nbMeasures);
Comparator<IAlternative> oracle = getOracle(randomWeights, trainingAlternatives, testAlternatives, trainingRules, testRules, nbTransactions);
Ranking<IAlternative> expectedRanking = computeRankingWithOracle(oracle, trainingAlternatives);
AbstractRankingLearning algo = getLearningAlgo(expectedRanking);
FunctionParameters functionParameters = algo.learn();
functionParameters.setMeasureNames(measures);
IScoreFunction<IAlternative> func = ScoreFunctionFactory.getScoreFunction(functionParameters);
Ranking<IAlternative> actualTestAlternativesRanking = computeRankingWithOracle(new ScoreFunctionOracle(func), testAlternatives);
Ranking<IAlternative> expectedTestAlternativesRanking = computeRankingWithOracle(oracle, testAlternatives);
List<RankingMetric> rankingMetrics = getRankingMetrics(testRules.size());
Map<String, String> rankingMetricLabels = getRankingMetricLabels(testRules.size());
Map<String, Double> rankingMetricValues = computeRankingMetricValues(rankingMetrics, rankingMetricLabels,
actualTestAlternativesRanking, expectedTestAlternativesRanking);
List<RuleWithMeasures> testRulesRankedWithLearnedFunc = Arrays
.stream(actualTestAlternativesRanking.getRanking())
.mapToObj(i -> testRules.get(i))
.collect(Collectors.toCollection(ArrayList::new));
for (int i = 0; i < testRulesRankedWithLearnedFunc.size(); i++) {
int pos = actualTestAlternativesRanking.getRanking()[i];
IAlternative a = testAlternatives.get(pos);
testRulesRankedWithLearnedFunc.get(i).setScore(func.computeScore(a));
}
List<RuleWithMeasures> testRulesRankedWithOracle = Arrays
.stream(expectedTestAlternativesRanking.getRanking())
.mapToObj(i -> new RuleWithMeasures(testRules.get(i), false))
.collect(Collectors.toCollection(ArrayList::new));
writeRules(resPath + "_ordered_test_rules.jsonl", testRulesRankedWithLearnedFunc);
writeRules(resPath + "_ordered_test_rules_oracle.jsonl", testRulesRankedWithOracle);
writeObject(resPath + "_func.jsonl", functionParameters);
writeObject(resPath + "_metrics.jsonl", rankingMetricValues);
return 0;
}
public static void main(String[] args) {
int exitCode = new CommandLine(new LearnFunctionAndRankCli()).execute(args);
System.exit(exitCode);
}
}